Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
World J Microbiol Biotechnol ; 39(4): 100, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36792799

RESUMEN

Plant growth-promoting rhizobacteria (PGPR) have multifarious beneficial activities for plant growth promotion; act as source of metabolites, enzymes, nutrient mobilization, biological control of pests, induction of disease resistance vis-a-vis bioremediation potentials by phytoextraction and detoxification of heavy metals, pollutants and pesticides. Agrochemicals and synthetic pesticides are currently being utilized widely in all major field crops, thereby adversely affecting human and animal health, and posing serious threats to the environments. Beneficial microorganisms like PGPR could potentially substitute and supplement the toxic chemicals and pesticides with promising application in organic farming leading to sustainable agriculture practices and bioremediation of heavy metal contaminated sites. Among field crops limited bio-formulations have been prepared till now by utilization of PGPR strains having plant growth promotion, metabolites, enzymes, nutrient mobilization and biocontrol activities. The present review contributes comprehensive description of PGPR applications in field crops including commercial, oilseeds, leguminous and cereal crops to further extend the utilization of these potent groups of beneficial microorganisms so that even higher level of crop productivity and quality produce of field crops could be achieved. PGPR and bacteria based commercialized bio-formulations available worldwide for its application in the field crops have been compiled in this review which can be a substitute for the harmful synthetic chemicals. The current knowledge gap and potential target areas for future research have also been projected.


Asunto(s)
Alphaproteobacteria , Metales Pesados , Plaguicidas , Humanos , Bacterias , Productos Agrícolas/microbiología , Verduras , Agricultura , Desarrollo de la Planta , Plaguicidas/farmacología
2.
J Virol Methods ; 306: 114541, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35568082

RESUMEN

Cotton leaf curl disease (CLCuD) ranks top among all endemic diseases transmitted by whitefly (Bemisia tabaci) affecting cotton (Gossypium hirsutum) causing severe economic losses to the cotton growers in the Indian subcontinent. For its effective management, robust tools for detection are a prerequisite and it is important to diagnose the virus titre in early stage of infection in plants as well as in the disease transmitting vector. Considering the limitations in current PCR-based techniques we have standardised rapid and sensitive Loop Mediated Isothermal Amplification (LAMP) protocol for the diagnosis of cotton leaf curl virus (CLCuV) in cotton leaves and in its transmitting vector whitefly. Perhaps, this is the first report of use of LAMP tool for rapid diagnosis of CLCuV in cotton and its transmitting vector the whitefly. Further, the colorimetric detection for diagnostic simplicity of amplified LAMP product by using different dyes lead to enhanced applicability of this technique in the field of disease diagnostics. The merit of present study is that the diagnostic failure of PCR and LAMP due to low virus titre in the infected leaf has been circumvented through the combination of rolling circle amplification (RCA) with LAMP. Thus RCA-LAMP can be an option for ultra-sensitive detection of samples with low virus titre. The potential applications of this advanced diagnostic tool in laboratory research on diagnosis of CLCuV, an important viral pathogen of cotton have been discussed.


Asunto(s)
Begomovirus , Hemípteros , Virosis , Animales , Begomovirus/genética , Gossypium/genética , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Enfermedades de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...